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Abstract 8 

Gas-to-particle partitioning governs the fate of Oxygenated Organic Molecules (OOMs) and 9 

the formation of organic aerosols. We employed a Chemical Ionization Mass Spectrometer equipped 10 

with a Filter Inlet for Gases and AEROsol (FIGAERO-CIMS) to measure gas-particle distribution 11 

of OOMs in a winter campaign in urban atmosphere. The observed gas to particle (G/P) ratios show 12 

a narrower range than the equilibrium G/P ratios predicted from saturation mass concentration C* 13 

and organic aerosol content. The difference between observed and equilibrium G/P ratios could be 14 

up to 10 orders of magnitude, depending on C* parameterization selection. Our random forest 15 

models identified relative humidity (RH), aerosol liquid water content (LWC), temperature and 16 

ozone as four influential factors driving the deviations of partitioning from equilibrium state.  17 

Random forest models with satisfactory performance were developed to predict the observed G/P 18 

ratios. Intrinsic molecule features far outweigh meteorological and chemical composition features 19 

in the model's predictions. For a given OOM species, particle chemical composition features 20 

including pH, RH, LWC, organic carbon, potassium and sulfate dominate over meteorological and 21 

gaseous chemical composition features in predicting the G/P ratios. We identified positive or 22 

negative effects, as well as the sensitive ranges, of these influential features using SHapley Additive 23 

exPlanations (SHAP) analysis and curve fitting with a generalized additive model (GAM). Our 24 

models found that temperature does not emerge as a significant factor influencing the observed G/P 25 

ratios, suggesting that other factors, most likely associated with particle composition, inhibit the 26 
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gas/particle partitioning of OOMs in response to temperature change. 27 

1. Introduction 28 

 Oxygenated organic molecules (OOMs) are ubiquitous in the atmosphere. They are key 29 

constituents of organic aerosols (OA) and play a critical role in particle formation and growth (Yuan 30 

et al., 2024). The distribution of an OOM between gas and particle phases not only reflects its 31 

volatility or water solubility, but also governs its formation pathways, atmospheric transport and 32 

deposition. Therefore, understanding the phase distribution of OOMs is essential for gaining 33 

insights into their volatility, transformation processes and environmental impacts in the atmosphere.  34 

Gas-to-Particle (G/P) ratios of OOMs measured by laboratory (e.g., ozonolysis products from 35 

Δ3-Carene (Li et al., 2024)) or field studies (e.g., in Hyytiälä forest, Finland (Lutz et al., 2019)) were 36 

sometimes used to derive saturation mass concentrations (C*) or partitioning coefficients (Ki), 37 

assuming that the observed G/P ratios represent an equilibrium partitioning state (Priestley et al., 38 

2024; Li et al., 2024; Lutz et al., 2019; Stark et al., 2017). However, the G/P ratio of an OOM in 39 

atmospheric conditions is influenced by not only intrinsic OOM physicochemical properties but 40 

also external factors such as meteorological shifts (Hildebrandt et al., 2009), precursor oxidation 41 

(Pankow, 1994; Seinfeld and Pankow, 2003), particle chemical composition, morphology and 42 

particle-phase reactions (Jang et al., 2002; George et al., 2007). As a result, OOMs rarely achieve 43 

equilibrium partitioning between the gas and particle phases (Roldin et al., 2014).  44 

Gas/particle partitioning kinetics has been incorporated into many atmospheric aerosol models, 45 

such as aerosol dynamics models (Liu et al., 2019; Zaveri et al., 2014) and kinetic multilayer models 46 

(Fowler et al., 2018; Roldin et al., 2014), which accounted for molecular transfer rates, interphase 47 

interactions, and environmental variability (Shiraiwa and Pöschl, 2021) in the gas-to-particle 48 

transfer process. The development of these models has advanced our understanding of the 49 

distribution and transport of organic compounds. However, existing theories and models often rely 50 

on parameter simplifications or assumptions, and there is a lack of systematic studies examining the 51 

factors influencing the phase distribution of OOMs under real atmospheric conditions.  In recent 52 

years, machine learning methods have been successfully applied to for a variety of purposes 53 

including compound identification (Franklin et al., 2022; Boiko et al., 2022), aerosol classification 54 
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(Christopoulos et al., 2018; Bland et al., 2022), precursor apportionment (Pande et al., 2022; Wang 55 

et al., 2021) and property prediction (Gong et al., 2022; Ruiz-Jimenez et al., 2021). Machine learning 56 

has been proven to be a powerful, data-driven approach capable of uncovering complex and 57 

nonlinear relationships between variables. (Lin et al., 2022; Zhu et al., 2019). Unlike physical or 58 

chemical models, machine learning does not rely on predefined assumptions or simplifications, 59 

which enables it to unveil previously unrecognized interactions.  60 

In this work, we employed a Chemical Ionization Mass Spectrometer equipped with a 61 

Chemical Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsol 62 

(FIGAERO-CIMS) in an urban location to measure the concentrations of OOMs in both the gas and 63 

particle phases. By building data-driven machine learning models with the G/P ratio as the target 64 

variable, we explored the influencing factors of gas-particle distribution of OOMs and examined 65 

the factors that contribute to the deviations from equilibrium gas/particle partitioning. This study 66 

offered new insights and provided the foundation for future studies on the atmospheric behavior of 67 

OOMs. 68 

2. Methodology 69 

2.1 OOM measurement 70 

 Hourly measurements of OOMs in both gas and particle phases was conducted during a winter 71 

campaign from December 5th, 2022, to January 8th, 2023, using an iodide-based FIGAERO-CIMS 72 

(Aerodyne Research Inc., USA) at an urban site in Wuhan (114.6157°E, 30.4577°N). This site is 73 

the only provincial supersite operated by local environmental authority for monitoring urban air 74 

quality in Wuhan. We obtained valid data of 594 hours, during which meteorological parameters 75 

(e.g., relative humidity (RH) and temperature), particulate chemical components (e.g., organic 76 

carbon (OC) and sulfate ions (SO4
2-)), and gaseous components (e.g., sulfur dioxide (SO2) and ozone 77 

(O3)) were routinely monitored.  78 

 The design of FIGAERO-CIMS for hourly OOMs measurement has been described by 79 

previous studies (Zhao et al., 2024; Lopez-Hilfiker et al., 2014; Lee et al., 2014). Briefly, the 80 

FIGAERO operated in a measurement cycle of 1 hour alternating between gas-phase and particle-81 
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phase modes. During the gas-phase mode, ambient air was drawn at a flow rate of 2 L/min directly 82 

into the ion-molecule reactor (IMR), where gaseous molecules were ionized and subsequently 83 

detected as adduct ions with the reagent ion I−. Simultaneously, another flow of ambient air was 84 

pulled through a PM2.5 cyclone (URG-2000-30EN, URG Corp.) and then a PTFE filter (2 μm 85 

Zefluor, 25 mm, Pall Corp.), where particles smaller than 2.5 μm were collected. During the 86 

subsequent particle-phase mode, the molecules on the PTFE filter underwent thermal desorption in 87 

a heated ultrahigh-purity (UHP) nitrogen flow, which kept at room temperature for 2 minutes, 88 

increased to 200 ℃ over 15 minutes, held at 200 ℃ for an additional 15 minutes to ensure the 89 

desorption of the majority of OOMs (Lopez-Hilfiker et al., 2014) and then cooled to room 90 

temperature within 4 minutes. The desorbed molecules were directed into a turbulent flow IMR. A 91 

field blank sample was collected every 24 hours. 92 

2.2 OOMs Identification and Selection 93 

OOMs were identified using a non-target strategy. Mass calibration was performed using ions 94 

such as NO3
−, C2F3O2

−, IC2H2O2
−, IC2F3HO2

−, IC3F5HO2
−, and I3

−, covering a mass range from 62 95 

to 381 m/z. The spectra peaks were iteratively fitted with multiple peaks using a custom peak shape 96 

until the residual was reduced to less than 5 % (Lee et al., 2014; Stark et al., 2015). Subsequently, 97 

the exact masses of these multiple peaks were matched with the most probable elemental formulas 98 

within the ranges of C1-30H1-60O0-20N0-2S0-2X0-2I0-1
−, where X stands for halogen atoms, with mass 99 

errors smaller than 10 ppm (mass resolution of ~6000). Isotope distribution was inspected to match 100 

with theoretical isotope pattern. Elemental ratio and double bond equivalent (DBE) limits of the 101 

formulas were 0.3 ≤ H/C ≤ 3, N/C ≤ 0.5, O/C ≤3, S/C ≤ 1 and 0 ≤ DBE ≤ 20 (Kind and Fiehn, 2007; 102 

Lee et al., 2018; Kind and Fiehn, 2006). 103 

 Only those OOMs with a unit mass peak area ratio of > 20 % and a sample-to-blank ratio of > 104 

2 were included for further analysis. Thermal desorption may cause OOM decomposition in the 105 

particle phase. Using a K-means clustering method, we found that, on average, 25.1% of particle-106 

bound OOM species number and 26.8% of OOM mass detected by the FIGAERO-CIMS could be 107 

attributed to thermal decomposition fragments (Supplementary Materials Text S1). These fragments 108 

were excluded from the gas/particle partitioning analysis. The overlap of non-fragment particle-109 
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bound OOM species with those gas-phase OOM species resulted in 123 species, which were chosen 110 

as the target species for subsequent partitioning analysis. Based on our previous work (Figure S1) 111 

(Wang et al., 2024), these 123 OOM species were classified to 41 aromatic species (33.7%), 35 112 

monoterpene-derived species (28.3%), 14 isoprene-derived species (11.4%), 11 aliphatic species 113 

(8.7%), 10 biomass burning tracers (8.1%), 3 sulfur-containing species (2.4%) and 9 other unknown 114 

species (7.3%).   115 

2.3 Observed G/P ratios of OOMs 116 

The concentrations of an OOM species in gas phase and particle phase are calculated as: 117 

𝐶𝑔 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑔

𝑆×𝑡𝑔×𝑄𝑔
× 1000     (1) 118 

𝐶𝑝 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑝

𝑆×𝑡𝑝×𝑄𝑝
× 1000    (2) 119 

where 𝐶𝑔 (ng m-3) and 𝐶𝑝 (ng m-3) are average concentrations of a species in gas phase and 120 

particle phase, respectively, in a measurement interval (e.g., 1 hour in our campaign). 𝑠𝑖𝑔𝑛𝑎𝑙𝑔 is 121 

the integrated signal (unit: counts) of this species during the 21-minute gas-phase measurement time 122 

(𝑡𝑔 ) in a measurement interval. 𝑡𝑝 is the particle sampling time (24 minutes) in a measurement 123 

interval. 𝑠𝑖𝑔𝑛𝑎𝑙𝑝 is the integrated signal of the particle-phase species during thermal desorption 124 

period. 𝑄𝑔 and 𝑄𝑝 are the sampling flow rates for the gas phase and particle phase, respectively 125 

(Liter min-1). S is the sensitivity of the species (counts per ng). The observed G/P ratio (
𝐺

𝑃
)𝑜𝑏𝑠 can 126 

be calculated as: 127 

(
𝐺

𝑃
)𝑜𝑏𝑠  =

𝐶𝑔

𝐶𝑝
=

𝑠𝑖𝑔𝑛𝑎𝑙𝑔×𝑡𝑝×𝑄𝑝

𝑠𝑖𝑔𝑛𝑎𝑙𝑝×𝑡𝑔 ×𝑄𝑔
      （3） 128 

2.4 Comparison with equilibrium G/P ratios  129 

 We compared the observed G/P ratios of OOM species in the campaign with those equilibrium 130 

G/P ratios (
𝐺

𝑃
)𝑒𝑞 estimated from saturated mass concentration C* and mass concentration of organic 131 

aerosol COA (COA = COC × 1.4) using Eq. (4)  132 

   (
𝐺

𝑃
)𝑒𝑞 =

𝐶∗(𝑇)

𝐶𝑂𝐴
                    （4） 133 
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C* at 300 K of OOMs was calculated using 4 different parameterizations reported by Mohr et 134 

al. (2019) , Peräkylä et al. (2020), Ren et al. (2022) and Priestley et al. (2024). Mohr et al. (2019)  135 

applied an updated version of the molecular formula parameterization described by Donahue et al. 136 

(2011) (based on SIMPOL) to estimate C* from the numbers of carbon, oxygen, and nitrogen atoms 137 

of an OOM species (𝑛𝐶, 𝑛𝑂 , and 𝑛𝑁). This parameterization likely produces C* of pure compounds. 138 

Ren et al. (2022) obtained C* of OOMs via calibrated C* vs. Tmax (thermal desorption temperature at 139 

which the maximum signal intensity occurs) correlations in thermal desorption process. A similar 140 

parameterization formula between C* and 𝑛𝐶, 𝑛𝑂 , and 𝑛𝑁  was then derived using multivariate 141 

regression. Peräkylä et al. (2020) measured gas and particle-phase concentrations, in an assumed 142 

equilibrium state, of α-pinene ozonolysis products using online instruments in a chamber. The C* of 143 

the products were obtained via Eq. (4) and a parameterization was obtained between C* and 𝑛𝐶, 𝑛𝑂 , 144 

𝑛𝑁 and the number of hydrogen atoms (𝑛𝐻). The parameterization of Priestley et al. (2024) was 145 

obtained similar to Peräkylä et al. (2020), but the gas and particle-phase concentrations of OOMs 146 

were measured in residential wood-burning emissions. The four C* parameterizations are listed in 147 

Text S2. A temperature correction was made based on Eqs. (5) and (6) to convert 𝐶 ∗(300𝐾) to 148 

𝐶 ∗(𝑇) at observed temperatures (Epstein et al., 2010; Li et al., 2024): 149 

𝐶 ∗(𝑇) = 𝐶 ∗(300𝐾) × exp (
∆𝐻𝑣𝑎𝑝

𝑅
(

1

300𝐾
−

1

𝑇
)       (5) 150 

∆𝐻𝑣𝑎𝑝 = −11 × log10 𝐶 ∗(300𝐾) + 129      (6)  151 

 where ∆𝐻𝑣𝑎𝑝 is the enthalpy of vaporization. R is gas constant. T is the observed 152 

temperature in every hour. 𝐶 ∗(𝑇) was then used in Eq. (4) to estimate equilibrium G/P ratios. 153 

2.5 Random forest model 154 

2.5.1 Build random forest models 155 

As illustrated by the scatter plots scatter plots of G/P ratios versus RH or T of example OOM 156 

species in Figure S2, no clear correlation is observed between the G/P ratios and environmental 157 

variables. More complex interactions and potentially non-linear dependences exist among OOM 158 

physicochemical properties, gas and particle phase reactions, and environmental variables. 159 

Therefore, we employed random forest models to investigate the influencing factors of the G/P 160 
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ratios of OOMs. 161 

Our selection of influencing factors (i.e. features) is based on a comprehensive literature review.  162 

We categorized 30 features into four groups: (1) 9 molecule features of the OOMs: number of carbon 163 

atoms (nC), number of oxygen atoms (nO), number of nitrogen atoms (nN), number of hydrogen 164 

atoms (nH), molecular weight (Mw), double bond equivalent (DBE), hydrogen to carbon atom ratios 165 

(H/C), oxygen to carbon atom ratios (O/C) and oxidation state of carbon (OSc). (2) 7 meteorological 166 

features: RH, temperature (T), wind speed (WS), wind direction (represented by sine and cosine 167 

functions to preserve the periodicity, denoted as WD_sin and WD_cos), ultraviolet-A (UV-A), 168 

ultraviolet-B (UV-B), photolysis rates of HONO (PRHONO). (3) 4 gaseous composition features: SO2, 169 

O3, nitrogen dioxide (NO2) and ammonia (NH3). (4) 10 particle composition features: OC, elemental 170 

carbon (EC), SO4
2-, nitrate ions (NO3

-), chloride ions (Cl-), ammonium ions (NH4
+), fine particulate 171 

matter (PM2.5), potassium ions (K+), as well as aerosol-phase pH and liquid water content (LWC). 172 

Calculation details of pH and LWC using ISORROPIA-II model (Fountoukis and Nenes, 2007) are 173 

provided in Text S3. This feature selection scheme guarantees a balanced representation of pertinent 174 

factors, while preserving the simplicity and predictive efficacy of the models. 175 

First, we developed a multi-species model involving 123 OOM species to predict the (
𝐺

𝑃
)𝑜𝑏𝑠 176 

of OOMs from molecule features, meteorological features, gas and particle composition features. A 177 

total of 73062 (
𝐺

𝑃
)𝑜𝑏𝑠 values for 123 species with hourly resolution were collected in the winter 178 

campaign. Outlier removal is described in Text S4. The data used for modeling were divided into 179 

training data used for model training and test data used for model evaluation, which comprise 85% 180 

and 15% of the total data, respectively. 181 

Second, we selected six typical OOMs, including more volatile (C5H8O4, C6H10O4, C6H5NO3, 182 

C7H7NO3, C* range: 103.90~106.53 μg m-3) and less volatile species (C10H16O4, C12H21NO9, C* range: 183 

10-4.73 ~101.18 μg m-3) according to the C* parameterization of Mohr et al. (2019). C5H8O4 (glutaric 184 

acid (Lee et al., 2014; Reyes-Villegas et al., 2018)) and C6H10O4 (adipic acid (Ye et al., 2021; Lee 185 

et al., 2014)) are small dicarboxylic acids (C ≤ 6) typically formed through photochemical 186 

degradation of reactions of alkenes, aldehydes, longer-chain acids (Kawamura and Sakaguchi, 1999) 187 
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or other low-oxygen organic compounds (Grosjean and Friedlander, 1980) in urban atmosphere 188 

(Kawamura and Ikushima, 1993). C6H5NO3 (Huang et al., 2019; Cai et al., 2022) and C7H7NO3 189 

(Huang et al., 2019; Cai et al., 2022) are nitrophenols either directly emitted from vehicle exhaust 190 

(Tremp et al., 1993), coal and wood combustion (Huang et al., 2019), industrial processes (Harrison 191 

et al., 2005) or being formed through the nitration of phenol in gas or liquid phase (Lüttke and 192 

Levsen, 1997). C10H16O4 is primarily derived the oxidation of monoterpenes (Ye et al., 2019; 193 

Barreira et al., 2021). C12H21NO9 is an organic nitrate from long-chain alkane oxidation under high-194 

NOx conditions (Wang and Ruiz, 2018).   195 

Third, single-species models were tailored to predict the gas/particle partitioning behaviors of 196 

these six individual OOMs under varying meteorological and gas-particle composition conditions. 197 

We also build random forest models to investigate how (
𝐺

𝑃
)𝑜𝑏𝑠 of the six OOMs deviate from (

𝐺

𝑃
)𝑒𝑞 198 

under varying meteorological and gas/particle composition conditions.  199 

2.5.2 Model optimization, evaluation and feature importance analysis  200 

To optimize and evaluate the model's performance, we applied a combination of Grid Search 201 

and Cross-Validation methods. First, we employed Grid Search to tune the hyperparameters of the 202 

Random Forest model. The search space included the following hyperparameters: n_estimators (the 203 

number of decision trees), max_depth (the maximum depth of each tree), and max_features (the 204 

number of features considered for splitting at each node) and min_samples_split (the minimum 205 

number of samples required to split an internal node). For each combination of hyperparameters, 206 

we used 5-fold Cross-Validation on the training set with coefficient of determination (R²) as the 207 

primary metric to assess model performance and identify the best configuration.  208 

After selecting the optimal hyperparameters, we further evaluated the final model using 5-fold 209 

Cross-Validation to assess its performance. In this evaluation, both R² and Root Mean Square Error 210 

(RMSE) were used as metrics: R² indicates the proportion of variance in the G/P ratio explained by 211 

the model. RMSE, on the other hand, quantifies the average prediction error and is calculated as the 212 

square root of the average squared differences between the predicted and actual values.  The final 213 

model performance was determined by averaging the R² and RMSE values across the 5 validation 214 
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sets. All model tuning and evaluation were conducted using Python (v.3.8). 215 

 To quantify the influence of each feature on the G/P ratio, we computed SHAP (SHapley 216 

Additive exPlanations) value of each feature for each sample (i.e., at each hour) using the SHAP 217 

package (v.0.40.0) in Python (v.3.8). A positive SHAP value indicates that the feature contributes 218 

positively to the G/P ratio, while a negative SHAP value means it has a negative contribution. The 219 

SHAP values were then fitted with a generalized additive model (GAM) using the pygam package 220 

(v.0.8.0) to further identify the sensitive ranges where the changes of feature values significantly 221 

affect the SHAP values. For more details, please refer to Text S5. We utilized two-way Partial 222 

Dependence Plots (PDPs) (Chen et al., 2024; Shi et al., 2023; Zhang et al., 2022) to analyze the joint 223 

effects of T and RH on the predicted G/P ratio. This analysis yielded a comprehensive understanding 224 

of how simultaneous changes of T and RH affect the observed G/P ratio, thereby unveiling the 225 

complex dynamics among these variables. For more details, please refer to the Text S6. 226 

3. Results and Discussion 227 

3.1 Observed G/P ratios of OOMs and comparison with equilibrium partitioning 228 

   229 

 230 

Figure 1. Comparison of (
𝐺

𝑃
)𝑜𝑏𝑠 of 123 OOMs with corresponding (

𝐺

𝑃
)𝑒𝑞 predicted by Eq. (4). C* 231 

was estimated from the parameterizations of Mohr et al. (2019), Peräkylä et al. (2020), Ren et al. 232 

(2022) and Priestley et al. (2024), respectively. Error bars of (
𝐺

𝑃
)𝑜𝑏𝑠 denote the range of G/P ratios 233 

https://doi.org/10.5194/egusphere-2025-229
Preprint. Discussion started: 17 March 2025
c© Author(s) 2025. CC BY 4.0 License.



 

10 

 

observed under varying conditions for 594 samples (i.e. 594 hours). Error bars of (
𝐺

𝑃
)𝑒𝑞 denote the 234 

variations with temperature and COA. Color scales in (b-e) denote carbon number of OOM species. 235 

Dashed red lines in (b-e) denote a 1:1 correspondence.  236 

As shown in Figure 1a, although G/P ratios generally decrease with increasing molecular 237 

weight, the observed G/P ratios (
𝐺

𝑃
)𝑜𝑏𝑠 show a narrower range (10-1~101.5) than the equilibrium 238 

G/P ratios (
𝐺

𝑃
)𝑒𝑞 predicted from Eq. (4). The differences could be up to 10 orders of magnitude, 239 

depending on C* parameterization. The (
𝐺

𝑃
)𝑒𝑞  predicted by Mohr et al. (2019) are higher than 240 

(
𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC = 2-5 and lower than (

𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC > 8 (Figure 1b). 241 

On the basis of thermal desorption temperature, Ren et al. (2022) predicts lower equilibrium G/P 242 

ratios than all other parameterizations and our observation. Although Peräkylä et al. (2020) also 243 

predicted lower G/P ratios, their ratios are much closer to our observation than Ren et al. (2022). 244 

Among all the predictions, the prediction from Priestley et al. (2024) is most close to our observation. 245 

This is because their C* parameterization is based on the measured gas and particle-phase 246 

concentrations of OOMs in fresh or aged residential wood-burning emissions. Their predicted G/P 247 

ratio is thus inherently consistent with the observed G/P ratios in our study. 248 

In theory, no matter which C* parameterization is used in Eq. (4), the temporal variation of 249 

(
𝐺

𝑃
)𝑒𝑞 for an OOM species depends solely on COA and temperature. Therefore, we are able to obtain 250 

a normalized (
𝐺

𝑃
)𝑒𝑞, which is independent of C* parameterization, by dividing the (

𝐺

𝑃
)𝑒𝑞 of an 251 

OOM by its maximum value. Diurnal variations of normalized (
𝐺

𝑃
)𝑒𝑞 of C5H8O4 and C7H7NO3 are 252 

shown in Figure 2a-2b and those of other four selected OOMs are shown in Figure S3. We found 253 

similar diurnal variations for all six OOMs: a peak G/P ratio appeared in the afternoon, which is 254 

attributed to higher temperature. In contrast, we observed significant fluctuations of (
𝐺

𝑃
)𝑜𝑏𝑠 diurnal 255 

variations for the six OOM species during the campaign, as shown in Figure 2c-2h. This indicates 256 

that the extent of deviation of actual gas/particle partitioning from equilibrium state fluctuates over 257 

time, driven by other unknown factors. In this study, we will first examine the influencing factors 258 
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of gas-particle distribution of OOMs in urban atmosphere during the winter campaign (Section 3.2), 259 

followed by an investigation into the factors contributing to the discrepancies between observed and 260 

equilibrium G/P ratios (Section 3.3). 261 

  262 

Figure 2. Diurnal variations of (a-b) Normalized equilibrium G/P ratios for the selected species 263 

(C5H8O4 and C7H7NO3) and (c-h) observed G/P ratios during the campaign. Solid line denotes the 264 

average value and filled area denotes the 95% confidence intervals of the mean.  265 

3.2 Influencing Factors of the observed G/P ratios of OOMs 266 

3.2.1 Multi-species model performance and key features 267 

  268 

 269 

Figure 3. Multi-Species Model: (a) Feature importance based on the mean of absolute SHAP values 270 
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calculated for 594 samples (i.e. 594 hours) to predict the G/P ratio. (b) Distribution of SHAP values 271 

in 594 samples for top 20 features. 272 

 The 5-fold cross-validation demonstrates that a predictive multi-species model with 273 

satisfactory performance was developed, with R2=0.88 ± 0.02 and RMSE = 1.76 ± 0.13 (Figure S4). 274 

Mean absolute SHAP values indicate the average importance of each feature in predicting the 275 

observed G/P ratios (Figure 3a). The model highlights that intrinsic molecule features, such as nC, 276 

Mw, nH, DBE, far outweigh meteorological and chemical composition features in the model's 277 

predictions. Of the nine molecular features, eight are ranked as highly important, with nN being 278 

comparatively less influential. 279 

Figure 3b shows the SHAP value distribution for each feature. For molecule features, such as 280 

nC, Mw, nH and nO, high feature values are associated with negative SHAP, while low feature values 281 

are associated with positive SHAP. This suggests that large molecules with high nC, Mw, nH and nO, 282 

and consequently lower volatility, are more likely to partition into the particle phase, thereby 283 

reducing the G/P ratio.  284 

 285 

Figure 4. Predicted G/P ratios using the developed multi-species model for (a) Monocarboxylic 286 

acids as a function of the number of carbon atoms, (b) Modified 10-carbon monocarboxylic acids 287 

as a function of the number of additional hydroxyl groups and (c) Modified 10-carbon 288 

monocarboxylic acids as a function of DBE, under average daytime and nighttime environmental 289 

and gas/particle composition conditions. 290 

However, the molecule features about oxidation state and unsaturation degree did not show 291 

consistent effects on the observed G/P ratios. For example, OSc has a negative effect on the G/P 292 

ratios, whereas O/C has a positive effect. DBE has a negative effect on the G/P ratios, whereas H/C 293 

shows a mixed positive or negative effect. This is due to the fact that these features are dependent 294 
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variables as a function of nC, nH, nN and nO. To isolate the effect of oxidation and unsaturation-295 

related features, we utilized the trained random forest model to predict G/P ratios of modified C10 296 

monocarboxylic acid with varying number of hydroxyl group and DBE (Figure 4b and 4c). Other 297 

features in the model were fixed at average daytime or nighttime values observed during the 298 

campaign (see Table S1, S2). For comparison, the isolated effect of carbon atom number is also 299 

plotted (Figure 4a).  300 

Figure 4 demonstrates that the number of carbon atoms exerts the most significant influence 301 

on the predicted G/P ratio, which decreases sharply as the carbon atom number increases from 1 to 302 

4. Beyond this point, the ratio levels off. For modified 10-carbon monocarboxylic acids, G/P ratios 303 

are high when there is one or no hydroxyl group (Figure 4b). The G/P ratio levels off when the 304 

number of hydroxyl group exceeds 2. The G/P ratio decreases with increasing DBE value (Figure 305 

4c). When DBE value exceeds 5, the G/P ratio change becomes minimal. In all the subplots, the G/P 306 

ratio during nighttime is consistently lower than that during daytime, which could be attributed to 307 

enhanced partitioning from gas to particles at lower nighttime temperature.  308 

3.2.2 Identification of key features and sensitive analysis in single-species models 309 

 310 

Figure 5. SHAP value analysis of three categories of features. Mean |SHAP| denotes the mean 311 

absolute SHAP values calculated for 594 samples (i.e. 594 hours): (a) glutaric acid (C5H8O4), (b) 312 

adipic acid (C6H10O4), (c) monoterpene oxidation products (C10H16O4), (d, e) nitrophenol (C6H5NO3 313 
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and C7H7NO3), and (f) nitrated aliphatic acid (C12H21NO9).  314 

By excluding molecule features, single-species models focus on the prediction of observed 315 

gas/particle partitioning behaviors of individual OOMs from meteorological and gas/particle 316 

composition features. The evaluation results and optimal parameters of the six single-species models 317 

are presented in Table S3. All models show acceptable performance (R2 = 0.51-0.88). For all six 318 

OOMs, particle composition features dominate over meteorological and gaseous composition 319 

features in predicting the G/P ratios (Figure 5). Particle composition features LWC, OC, K+, SO4
2- 320 

and pH, as well as RH, consistently play important roles in influencing the G/P ratios of these species.  321 

Below, we (1) examined the positive or negative effects of these features one by one (Figure 6a), 322 

and (2) identified the sensitive ranges of these features by fitting SHAP values against feature values 323 

using a GAM (Figure 7). 324 

pH is among the two most influential factors for the gas/particle partitioning of five species 325 

(C5H8O4, C6H10O4, C6H5NO3, C7H7NO3 and C10H16O4) with a sensitive range of 3.5–4.5 (as 326 

illustrated for C6H10O4 in Figure 7a). Within this range, an increase in pH results in a pronounced 327 

decrease of the G/P ratio. This phenomenon can be attributed to the enhanced partitioning of OOMs 328 

with acidic functional groups from gas to particles with elevated pH (Su et al., 2020).  329 

RH has a positive effect, ranking among the top 5 significant features, on the G/P ratios of three 330 

OOMs C6H5NO3, C7H7NO3, and C10H16O4 (Figure 6a). SHAP value is sensitive to RH across the 331 

full RH range (20%-80%, illustrated by an example C6H5NO3 in Figure 7b). LWC also has a 332 

significant positive effect for C5H8O4, C6H10O4, C6H5NO3, and C7H7NO3. For example, in the case 333 

of C5H8O4, a sharp increase in the G/P ratio is observed within the LWC range below 20 µg m-3 334 

(Figure 7c). The underlying mechanism of this behavior is unclear. One explanation is that the 335 

increase of RH and LWC in particles may facilitate hydrolysis reactions of organic compounds, 336 

thereby reducing the concentration of these OOMs in particle phase. It is also possible that the 337 

thermal desorption and subsequent detection of particle-bound OOMs were prohibited in aerosol 338 

particles with more moisture.  339 

Temperature ranged from -1.6 °C to 14.9 °C during the winter campaign. Although temperature 340 

increase tends to elevate the G/P ratios (Figure 6a), the models show that temperature did not rank 341 
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as important feature for 5 out of the 6 OOM species. We evaluated the effect of temperature on G/P 342 

ratios using two-way partial dependence plots (Figure S5). G/P ratio is sensitive to temperature 343 

change only for two dicarboxylic acids (C5H8O4 and C6H10O4, Figure S5a-S5b) and for C12H21NO9 344 

in a narrow temperature range of 10-13 oC (Figure S5f and Figure 7d). The G/P ratios of C6H5NO3, 345 

C7H7NO3 and C10H16O4 are not sensitive to temperature across most of the RH range. This behavior 346 

may be attributed to other factors that hinder the rapid equilibrium partitioning of OOMs when 347 

temperature changes. 348 
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 349 

Figure 6. SHAP summary plots for feature importance based on the random forest model for glutaric 350 
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acid (C5H8O4), adipic acid (C6H10O4), monoterpene oxidation product (C10H16O4), nitrophenol 351 

(C6H5NO3 and C7H7NO3), and nitrated aliphatic acid (C12H21NO9). Features are prioritized in 352 

descending order based on their importance. (a) SHAP summary for the observed G/P ratios (
𝐺

𝑃
)𝑜𝑏𝑠. 353 

(b) SHAP summary for (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞  ratios.  354 

 355 

OC has a significant negative impact (i.e., rank among the top 5) on the G/P ratios of all six 356 

species, being consistent with Eq. (4), where the equilibrium G/P ratios are inversely proportional 357 

to COA. Taking C12H21NO9 as example (Figure 7e), the SHAP values decrease monotonically with 358 

COA in the entire COA range (5-25 µg m-3). For this compound, EC ranks as the second most 359 

influential factor, exerting a notable negative impact below 4 µg m-3 (Figure 7f). 360 

SO4
2- has a positive effect (i.e., rank among the top 5) on the G/P ratios of C5H8O4, C6H10O4 361 

and C12H21NO9. For example, in the case of C6H10O4, the G/P ratio rises rapidly with increasing 362 

SO4
2- concentrations below 6 µg m-3 (Figure 7g). This may be partly related to the fact that SO4

2- is 363 

a highly hydrophilic component (Thaunay et al., 2015), which makes its effect similar to that of 364 

LWC. In addition, an increase of sulfate in aerosols is often associated with enhanced acidity and a 365 

decrease in pH (Zhang et al., 2007), which drives OOM from particle to gas phase as we explained 366 

above. 367 

K+ has a negative effect on the G/P ratios of C5H8O4, C10H16O4, C6H5NO3 and C7H7NO3. 368 

Taking C10H16O4 as example, the G/P ratio decreases rapidly with K+ in the concentration range of 369 

below 1 µg m⁻³ (Figure 7h). K+ is considered as a tracer of biomass burning. The increase of K+ is 370 

generally associated with higher pollution levels and higher OC concentrations. The effect of K⁺ on 371 

the G/P ratio is thus similar to that of OC.  372 

 373 
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 374 

Figure 7. Curve fitting of SHAP values versus features using a GAM, illustrating the sensitive 375 

ranges where the changes of feature values significantly affect the SHAP values. Only the most 376 

affected OOM species by the eight features are shown. (a) RH for C6H5NO3. (b) LWC for C5H8O4. 377 

(c) pH for C6H10O4. (d) Temperature for C12H21NO9. (e) OC for C12H21NO9. (f) EC for C12H21NO9. 378 

(g) SO42- for C6H10O4. (h) K+ for C10H16O4. Blue line denotes the GAM fit. Shaded area indicates 379 

95% confidence interval. Dots are the SHAP values for 594 samples (i.e. 594 hours). Red dashed 380 

line denotes SHAP value of 0. 381 
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3.3 Identifying key factors driving the deviations of gas/particle partitioning from equilibrium 382 

state 383 

To investigate the deviations of observed gas/particle partitioning from equilibrium state, we 384 

first calculate the ratios of (
𝐺

𝑃
)𝑜𝑏𝑠 over normalized (

𝐺

𝑃
)𝑒𝑞 in every hour for the selected six OOM 385 

species. Normalized (
𝐺

𝑃
)𝑒𝑞 was used here in order to offset the effect of the C* parameterization 386 

selection. We then developed new random forest models to investigate the effects of meteorological 387 

and gas/particle composition features on the (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞  ratios. All the models show acceptable 388 

performance (R2 = 0.52-0.83) (Table S4). 389 

Figure 6b presents the SHAP analysis results for the (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞  ratios of the six OOMs. The 390 

models identify RH, LWC, O3 and temperature as four influential factors driving the deviations from 391 

equilibrium partitioning. Positive correlations are observed between the SHAP values of 392 

(
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 and RH and LWC for all six compounds. This indicates that RH and LWC have 393 

stronger positive effect on (
𝐺

𝑃
)𝑜𝑏𝑠 than their effect on (

𝐺

𝑃
)𝑒𝑞, which should be negligible according 394 

to Eq. (4). Temperature is shown to be a negative factor driving the deviation from equilibrium 395 

partitioning, suggesting that temperature has a stronger influence on (
𝐺

𝑃
)𝑒𝑞 than (

𝐺

𝑃
)𝑜𝑏𝑠. This is 396 

consistent with our earlier result that (
𝐺

𝑃
)𝑜𝑏𝑠 is not sensitive to temperature. Surprisingly, O3 is 397 

identified as an important influential factor with negative effect, particularly for the three 398 

nitrophenols and monoterpene oxidation product C10H16O4. Since O3 is not expected to change (
𝐺

𝑃
)𝑒𝑞,  399 

the negative impact of O3 on (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 ratio could be explained by the fact that high O3 is likely 400 

to deplete gas phase OOMs, thereby reducing (
𝐺

𝑃
)𝑜𝑏𝑠. 401 

Conclusions  402 

We measured the G/P ratios of OOM species using a FIGAERO-CIMS in urban atmosphere in 403 

a winter campaign. The observed G/P ratios show a narrower range than the equilibrium G/P ratios 404 

predicted from C* and COA. The difference between observed and equilibrium G/P ratios could be 405 
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up to 10 orders of magnitude, depending on C* parameterization. Our observed G/P ratio is 406 

inherently closer to the equilibrium G/P ratios predicted from the C* parameterization by Priestley 407 

et al., which was derived from measured G/P ratios in wood-burning emissions. Our random forest 408 

models identified RH, LWC, O3 and temperature as four influential factors driving the deviations of 409 

gas/particle partitioning from equilibrium state.  410 

Random forest models with satisfactory performance were developed to predict observed G/P 411 

ratios. Intrinsic molecule features, such as nC, Mw, nH, DBE, far outweigh meteorological and 412 

chemical composition features in the model's predictions. Large molecules with high nC, Mw, nH 413 

and nO, and consequently lower volatility, are more likely to partition into the particle phase, thereby 414 

reducing the G/P ratio. As dependent variables, oxidation state and unsaturation do not show 415 

consistently positive or negative effects on the observed G/P ratios. If other variables are fixed, the 416 

model predicts that G/P ratios generally decrease with the addition of oxygen atom and DBE.  417 

Particle composition features dominate over meteorological and gaseous composition features 418 

in predicting the G/P ratio of a given OOM species. Among those particle features, pH, RH, LWC, 419 

OC, K+ and SO4
2- consistently play important roles in influencing the G/P ratios of the six selected 420 

OOM species, showing either positive or negative effect. We also identified the sensitive ranges 421 

where the changes of these features significantly affect the SHAP values and provided valuable 422 

insights for future research in atmospheric chemistry. It is surprising that temperature does not 423 

emerge as an important factor influencing the G/P ratios for five out of the six selected OOM species. 424 

Our model suggests that other factors, most likely associated with the particle composition, inhibit 425 

the gas/particle partitioning of OOMs in response to temperature change. 426 

The random forest models developed in this study have certain limitations. Aerosol particle 427 

coating may serve as an inhibitory factor of gas/particle partitioning. However, the mixing state and 428 

morphology of aerosol particles were not considered in the model due to the challenges in 429 

quantifying these features with high resolution. Furthermore, the model was based solely on the data 430 

collected during the winter season and for specific groups of OOM species present in urban 431 

atmosphere. To enhance the robustness of the gas-to-particle partitioning model, additional data 432 

collected under a broader range of atmospheric conditions are necessary. 433 
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